Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

نویسندگان

  • Edward Zagha
  • Satoshi Manita
  • William N Ross
  • Bernardo Rudy
چکیده

Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendritic Kv3.3 Potassium Channels in Cerebellar Purkinje Cells Regulate Generation and Spatial Dynamics of Dendritic Ca Spikes

Zagha E, Manita S, Ross WN, Rudy B. Dendritic Kv3.3 potassium channels in cerebellar Purkinje cells regulate generation and spatial dynamics of dendritic Ca spikes. J Neurophysiol 103: 3516–3525, 2010. First published March 31, 2010; doi:10.1152/jn.00982.2009. Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation...

متن کامل

Title: Dendritic Kv3.3 Potassium Channels in Cerebellar Purkinje Cells Regulate 4 Generation and Spatial Dynamics of Dendritic Ca

27 Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances 28 contributing to the generation and propagation of electrical activity. Voltage-gated 29 potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. 30 However, the functional relevance of this dendritic distribution is not understood. 31 Moreover, mutations in Kv3.3 cause ...

متن کامل

Kv3.3 channels at the Purkinje cell soma are necessary for generation of the classical complex spike waveform.

Voltage-gated potassium channel subunit Kv3.3 is prominently expressed in cerebellar Purkinje cells and is known to be important for cerebellar function, as human and mouse movement disorders result from mutations in Kv3.3. To understand these behavioral deficits, it is necessary to know the role of Kv3.3 channels on the physiological responses of Purkinje cells. We studied the function of Kv3....

متن کامل

Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate  f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...

متن کامل

Properties and functional role of voltage-dependent potassium channels in dendrites of rat cerebellar Purkinje neurons.

We characterized the properties and functional roles of voltage-dependent potassium channels in the dendrites of Purkinje neurons studied in rat cerebellar slices. Using outside-out patches formed <or=250 microm away from the soma, we found that depolarization-activated potassium channels were present at high density throughout the dendritic tree. Currents required relatively large depolarizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 103 6  شماره 

صفحات  -

تاریخ انتشار 2010